在肉牛的库存中,基于计算机视觉的方法已被广泛用于监测牛状况(例如,物理,生理学和健康)。为此,准确有效的牛行动是一种先决条件。通常,大多数现有模型仅限于个人行为,这些行为使用基于视频的方法提取时空特征来识别每只牛的个体作用。但是,牛之间存在社会性,它们的相互作用通常反映了重要条件,例如Estrus以及基于视频的方法忽略了模型的实时功能。基于这一点,我们解决了本文中单个框架中牛之间的实时识别的具有挑战性的任务。我们方法的管道包括两个主要模块:牛本地化网络和交互识别网络。在每时每刻,牛本地化网络都会从每个检测到的牛输出高质量的互动建议,并将其输入具有三流体系结构的交互识别网络。这样的三流网络使我们能够融合与识别交互有关的不同功能。具体而言,这三种功能是一个视觉特征,它提取了互动建议的外观表示,这是反映牛之间空间关系的几何特征,以及一种语义特征,它捕获了我们对个人动作和相互作用之间关系的先验知识牛。此外,为了解决数量不足的标记数据问题,我们基于自我监督学习的模型预先培训。定性和定量评估证明了我们框架作为实时识别牛相互作用的有效方法的性能。
translated by 谷歌翻译
Many e-commerce marketplaces offer their users fast delivery options for free to meet the increasing needs of users, imposing an excessive burden on city logistics. Therefore, understanding e-commerce users' preference for delivery options is a key to designing logistics policies. To this end, this study designs a stated choice survey in which respondents are faced with choice tasks among different delivery options and time slots, which was completed by 4,062 users from the three major metropolitan areas in Japan. To analyze the data, mixed logit models capturing taste heterogeneity as well as flexible substitution patterns have been estimated. The model estimation results indicate that delivery attributes including fee, time, and time slot size are significant determinants of the delivery option choices. Associations between users' preferences and socio-demographic characteristics, such as age, gender, teleworking frequency and the presence of a delivery box, were also suggested. Moreover, we analyzed two willingness-to-pay measures for delivery, namely, the value of delivery time savings (VODT) and the value of time slot shortening (VOTS), and applied a non-semiparametric approach to estimate their distributions in a data-oriented manner. Although VODT has a large heterogeneity among respondents, the estimated median VODT is 25.6 JPY/day, implying that more than half of the respondents would wait an additional day if the delivery fee were increased by only 26 JPY, that is, they do not necessarily need a fast delivery option but often request it when cheap or almost free. Moreover, VOTS was found to be low, distributed with the median of 5.0 JPY/hour; that is, users do not highly value the reduction in time slot size in monetary terms. These findings on e-commerce users' preferences can help in designing levels of service for last-mile delivery to significantly improve its efficiency.
translated by 谷歌翻译
Mixup is a popular data augmentation technique for training deep neural networks where additional samples are generated by linearly interpolating pairs of inputs and their labels. This technique is known to improve the generalization performance in many learning paradigms and applications. In this work, we first analyze Mixup and show that it implicitly regularizes infinitely many directional derivatives of all orders. We then propose a new method to improve Mixup based on the novel insight. To demonstrate the effectiveness of the proposed method, we conduct experiments across various domains such as images, tabular data, speech, and graphs. Our results show that the proposed method improves Mixup across various datasets using a variety of architectures, for instance, exhibiting an improvement over Mixup by 0.8% in ImageNet top-1 accuracy.
translated by 谷歌翻译
Distributed representations of words encode lexical semantic information, but how is that information encoded in word embeddings? Focusing on the skip-gram with negative-sampling method, we show theoretically and experimentally that the squared norm of word embedding encodes the information gain defined by the Kullback-Leibler divergence of the co-occurrence distribution of a word to the unigram distribution of the corpus. Furthermore, through experiments on tasks of keyword extraction, hypernym prediction, and part-of-speech discrimination, we confirmed that the KL divergence and the squared norm of embedding work as a measure of the informativeness of a word provided that the bias caused by word frequency is adequately corrected.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
In real-world time series recognition applications, it is possible to have data with varying length patterns. However, when using artificial neural networks (ANN), it is standard practice to use fixed-sized mini-batches. To do this, time series data with varying lengths are typically normalized so that all the patterns are the same length. Normally, this is done using zero padding or truncation without much consideration. We propose a novel method of normalizing the lengths of the time series in a dataset by exploiting the dynamic matching ability of Dynamic Time Warping (DTW). In this way, the time series lengths in a dataset can be set to a fixed size while maintaining features typical to the dataset. In the experiments, all 11 datasets with varying length time series from the 2018 UCR Time Series Archive are used. We evaluate the proposed method by comparing it with 18 other length normalization methods on a Convolutional Neural Network (CNN), a Long-Short Term Memory network (LSTM), and a Bidirectional LSTM (BLSTM).
translated by 谷歌翻译
This study proposes novel control methods that lower impact force by preemptive movement and smoothly transition to conventional contact impedance control. These suggested techniques are for force control-based robots and position/velocity control-based robots, respectively. Strong impact forces have a negative influence on multiple robotic tasks. Recently, preemptive impact reduction techniques that expand conventional contact impedance control by using proximity sensors have been examined. However, a seamless transition from impact reduction to contact impedance control has not yet been accomplished. The proposed methods utilize a serial combined impedance control framework to solve this problem. The preemptive impact reduction feature can be added to the already implemented impedance controller because the parameter design is divided into impact reduction and contact impedance control. There is no undesirable contact force during the transition. Furthermore, even though the preemptive impact reduction employs a crude optical proximity sensor, the influence of reflectance is minimized using a virtual viscous force. Analyses and real-world experiments confirm these benefits.
translated by 谷歌翻译
The demand for resilient logistics networks has increased because of recent disasters. When we consider optimization problems, entropy regularization is a powerful tool for the diversification of a solution. In this study, we proposed a method for designing a resilient logistics network based on entropy regularization. Moreover, we proposed a method for analytical resilience criteria to reduce the ambiguity of resilience. First, we modeled the logistics network, including factories, distribution bases, and sales outlets in an efficient framework using entropy regularization. Next, we formulated a resilience criterion based on probabilistic cost and Kullback--Leibler divergence. Finally, our method was performed using a simple logistics network, and the resilience of the three logistics plans designed by entropy regularization was demonstrated.
translated by 谷歌翻译
Generative models, particularly GANs, have been utilized for image editing. Although GAN-based methods perform well on generating reasonable contents aligned with the user's intentions, they struggle to strictly preserve the contents outside the editing region. To address this issue, we use diffusion models instead of GANs and propose a novel image-editing method, based on pixel-wise guidance. Specifically, we first train pixel-classifiers with few annotated data and then estimate the semantic segmentation map of a target image. Users then manipulate the map to instruct how the image is to be edited. The diffusion model generates an edited image via guidance by pixel-wise classifiers, such that the resultant image aligns with the manipulated map. As the guidance is conducted pixel-wise, the proposed method can create reasonable contents in the editing region while preserving the contents outside this region. The experimental results validate the advantages of the proposed method both quantitatively and qualitatively.
translated by 谷歌翻译
We present a data-driven framework to automate the vectorization and machine interpretation of 2D engineering part drawings. In industrial settings, most manufacturing engineers still rely on manual reads to identify the topological and manufacturing requirements from drawings submitted by designers. The interpretation process is laborious and time-consuming, which severely inhibits the efficiency of part quotation and manufacturing tasks. While recent advances in image-based computer vision methods have demonstrated great potential in interpreting natural images through semantic segmentation approaches, the application of such methods in parsing engineering technical drawings into semantically accurate components remains a significant challenge. The severe pixel sparsity in engineering drawings also restricts the effective featurization of image-based data-driven methods. To overcome these challenges, we propose a deep learning based framework that predicts the semantic type of each vectorized component. Taking a raster image as input, we vectorize all components through thinning, stroke tracing, and cubic bezier fitting. Then a graph of such components is generated based on the connectivity between the components. Finally, a graph convolutional neural network is trained on this graph data to identify the semantic type of each component. We test our framework in the context of semantic segmentation of text, dimension and, contour components in engineering drawings. Results show that our method yields the best performance compared to recent image, and graph-based segmentation methods.
translated by 谷歌翻译